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The efficiency of gradient design in MRI is limited by the simple
act that the gradient coil current and slew rate cannot exceed
ardware threshold values. In spiral MRI, which requires gradi-
nts to be very rapidly switched between positive and negative
alues, minimization of the acquisition time is achieved by main-
aining the current and slew rate as high as possible during the
ntire measurement. Since the current and slew rate compete
gainst each other, an efficient gradient design consists of two
arts in which current and slew rate are pushed alternatively to
heir limits. Values for these types of gradients can be obtained by
olving numerically the equation of motion for the spiral trajec-
ory. This paper shows that simple but reasonable mathematical
pproximations deliver reliable analytical solutions. Images ob-
ained using these analytical solutions do not show evident distor-
ions when compared with images obtained with numerical
olutions. © 1999 Academic Press

Key Words: spiral MRI; fast imaging; magnetic resonance
maging.

INTRODUCTION

Many situations exist in MRI where fast image acquisitio
f particular importance; very old or very young subje
1, 2), for example, find it rather difficult to stay still as
any psychiatric patients (3). Other examples include cardi

maging (4, 5), studies of flow dynamics (6), or studies o
evelopment of hemoglobin oxygenation (functional MRI)7).
or this reason, many sequences have been proposed
ast few years to reduce the length of the acquisition win
8–13), a task which is far from easy, since gradient wa
orms must be designed in such a way that the desired tr
ory in k space is properly traced without exceeding the l
ations of the hardware in use. Hardware constraints
rimarily two parameters: the gradient amplitude (which

imited by the peak current of the amplifier) and the grad
lew rate (which is limited by how fast the hardware
hange the instantaneous gradient value). Spiral MRI (14–19)
as recently acquired increasing importance among the
RI sequences since it is softer on the hardware, but
rovides excellent SNR and good robustness against m
s the name suggests, thek space is traced with a spirali

rajectory, which avoids the sharp gradient switching typic
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ecessary in the “raw after raw” acquisitions such as EPI
he other hand, spiral MRI suffers from image blurring, cau
y phase accrual related to off-resonance spins. If we defin
ectork in k space as

kx 5 uk ucosu [1a]

ky 5 uk usin u [1b]

ith u 5 (2pn/T) f(t), then the tip ofk traces an Archime
ean spiral ifuk(t)u 5 Au, whereA 5 1/(2pFOV) is constant
ince k 5 (g/ 2p) * 0

t g(t9)dt9, whereg(t9) is the gradien
ector, then optimal gradient waveforms can be determine
olving the equations of motion ofk. Exact solutions of th
ifferential equations of motion resulting from Eqs. [1] can
btained only with numerical methods. We show here
imple approximations can provide reliable analytical s
ions, and that gradient waveforms accordingly designed
ide uniform and time efficient coverage ofk space while
aintaining accurate image quality.

METHOD

The time evolution of the gradient follows simply from t
ime derivative ofk,

gx 5 ~2p/g! Au̇~cosu 2 u sin u ! [2a]

gy 5 ~2p/g! Au̇~sin u 1 u cosu ! [2b]

nd the expression of the slew rate follows as the time d
tive of the gradient:

sx 5 ~2p/g! A@~ü 2 uu̇ 2!cosu 2 ~2u̇ 2 1 uü!sin u# [3a]

sy 5 ~2p/g! A@~ü 2 uu̇ 2!sin u 1 ~2u̇ 2 1 uü!cosu#. [3b]

ur aim was to find time efficient analytical solutions of th
ifferential equations. The fastest spiral ink space would b

raced withx andy gradient components which, both start
rom zero, oscillate with an amplitude and phase such tha
esulting vectorg reaches immediately its maximum modu
1090-7807/99 $30.00
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nd remains constant from then on. This is impossibl
ractice, though, since for the gradient to have a con
mplitude throughout the entire acquisition window, its c
onents would have to oscillate very fast when tracing
piral near the center ofk space: the slew rate of these os

ations would be consequently exceedingly high. In a sim
ay a gradient whose time evolution is characterized b
onstant and maximum slew rate would require exceed
igh amplitude values when tracing the periphery ofk space
his problem can be circumvented by means of a gra
aveform made of two parts (20): a first part characterized b
constant slew rate, applied until the amplitude reache
aximum allowed value, and a second part, with cons
mplitude, which starts near the time when the slew rate
elow its maximum allowed value and ends whenu has com
leted the desired number of turns. We obtain a constant
ate gradient waveform from Eqs. [3] by imposing

usu 5 @sx
2 1 sy

2# 1/ 2

5 ~2p/g! A@~ü 2 uu̇ 2! 2 1 ~2u̇ 1 uü! 2# 1/ 2 5 smax.

[4]

ssumingü much smaller thanu̇ 2 for most of the trajectory
nd in the approximationu2 @ 1, Eq. [4] has a simple analy

cal solution:

u 5 F3

2 Sgsmax

2pAD
1/ 2

tG 2/3

. [5]

n a similar way, we obtain a constant amplitude gradient f
qs. [3] by imposing

FIG. 1. Plot of the gradient amplitude (a) generated by the “two-part
ate (b) (onlyx components are shown). The link between the “maximum
in
nt
-
e

r
a
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nt

its
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lls

w

ugu 5 @ gx
2 1 gy

2# 1/ 2 5 ~2p/g! Au̇@1 1 u 2# 1/ 2 5 gmax, [6]

hich, again foru2 @ 1, also has a simple analytical solutio

u 5 FSggmax

pA D tG 1/ 2

. [7]

e generated our two-part gradient waveform simply by
tituting in Eqs. [2]u given by Eq. [5] for the first part (sle
ate limited) andu given by Eq. [7] for the second pa
amplitude limited).gmax and smax were set by the hardwa
haracteristics of our 1.5-T GE SIGNA (General Elec
ilwaukee, WI) scanner. Nonetheless, to obtain the final
ient design, two important points had to be addressed: (a

ink between the two parts and (b) the gradient waveform w
racing the center ofk space, where the approximationu2 @ 1
oes not hold.
An accurate link of the two parts is fundamental since

ramatic discontinuity in the slope of the final gradient wa
orm would cause inhomogeneity in tracing thek space. On th
ther hand, Eqs. [5] and [7] show thatu has completel
ifferent time evolutions in the two cases of constant slew
nd constant gradient: this means that the slopes of the
aveforms at the time points when they cross their respe

hresholds almost certainly will differ enough to cause a vis
iscontinuity at the point of linkage. In order to find a pro

inkage we computed the slopes of the slew rate limited w
orm at all time points within the one period of oscillati
mmediately preceding its threshold crossing and the slop
he gradient-limited waveform at all time points within the o
eriod immediately following its threshold crossing. Ti
oints were 4ms apart, which was our scanner’s samp
esolution. The two waveforms were linked at the point

alytical solutions of the spiral equations of motion and of the correspon
w rate” and the “maximum amplitude” regimes is at about 8.5 ms after
” an
sle
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349SIMPLE SOLUTIONS FOR SPIRAL MRI
hich the difference between the slopes of the two wavef
as at a minimum, i.e., at the points which provided
moothest amplitude transition from one regime to the ot

FIG. 2. k-space trajectory designed for a 643 64 equivalent matrix size wi
40 mm FOV corresponding to the two-part gradient design shown in Fig.

FIG. 3. Comparison between two equivalent series of axial scans of
wo sets were obtained using respectively the numerical (upper) and a
s
e
r.

In addition, special attention had to be given to the grad
aveform in the vicinity oft 5 0, where the approximationu2

1 obviously does not hold. In fact, due to the presence o
ime derivative ofu in the gradient expression, the substitut
f Eq. [5] into Eq. [2] results in the appearance of the vari
in the denominator, which causes the gradient wavefor
xceed the slew rate limit fort ; 0 and to diverge att 5 0.
e modulated the amplitude of the gradient waveform in

icinity of t 5 0 with the function 12 exp(2t/t), choosing
such as to keep the gradient slew rate below its limi

articular in the present study, we chose a value oft which
llowed the gradient amplitude to increase from zero follow

he profile assumed by the waveform fort @ 0 (see Fig. 1a
s shown in Fig. 1b, this choice generated a rather over
ervative slew rate, well below its limit during approximat
he first millisecond. It is useful to note that from a compu
ional point of view, both the proper linkage and the mod
ion of the gradient amplitude were easily obtained by mea

few extra statements in the program generating the gra
aveforms. In this way we generatedx andy components o

same brain obtained at 1.5 T with the spiral sequence described in th
tical (lower) solutions of the equation of motion for the spiral trajectory.
the
naly
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350 SALUSTRI, YANG, AND GLOVER
he vectorg that, starting from zero, increase their amplitu
ith a constant maximum slew rate (200 T/m/s) until
aximum allowed amplitude (22 mT/m) is reached; from
oint on the gradient waveform continues with constant
litude and below-maximum, decreasing slew rate. Figure
nd 1b show this behavior for thex component of both gradie
mplitude and slew rate. It can be seen that the link is at a
.5 ms after the onset. Figure 2 shows the resulting s

rajectory ink space designed for a 643 64 equivalent matri
ize with 240 mm FOV.

RESULTS

We applied these analytical solutions to imaging of the b
f one subject and compared the results with images o
ame brain taken with a two-part design of the gradients
enerated from numerical integration (Runge–Kutta) of
quation of motion. Figure 3 shows this comparison. The s
as part of a board-approved intramural research protoc

he National Institutes of Health. Our focus was to see if
bove-described approximations would cause image d

ions and would affect the robustness of these solutions ag
otion. The resulting images were indeed very similar. It c
e noted that the subject was probably very still, being on

he authors and consequently substantially motivated. The
tanding similarity of the two sets of images also encourag
o believe that our procedure can be useful when the acq
ion duration is a concern: in fact, in this case further ma
lation of the gradient waveform in the vicinity oft 5 0 could
educe redundancy in the center ofk space, where numeric
olutions of the equation of motion notoriously produce o
ampling. This would result in an increase in the acquis
peed.
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